Limit Definition of a Derivative

- 1. Consider the function defined by $f(x) = x^2 1$. What is the value of $\lim_{h \to 0} \frac{f(3+h) f(3)}{(3+h) 3}$?
 - (a) 0
 - **(b)** 6
 - (c) 8
 - (d) 2x
 - (e) The limit does not exist.
- 2. The expression $\lim_{h\to 0} \frac{(x+h)^3 \ln(x+h) (x^3 \ln(x))}{h}$ is the derivative of what function?

(a)
$$f(x) = (x+h)^3 - \ln(x+h)$$

(b)
$$f(x) = 3x^2 - \frac{1}{x}$$

(c)
$$f(x) = 3x^2 - \frac{1}{x}$$

$$(d) f(x) = x^3 - \ln(x)$$

(e)
$$f(x) = \frac{(x+h)^3 - \ln(x+h) - (x^3 - \ln(x))}{h}$$

- 3. What is the instantaneous rate at which the volume of an $8in^3$ cube grows as its side lengths increase from a single vertex on the left-most face?
- 4. If f is a differentiable function and a is a number, then f'(a) is given by which of the following expressions:

I.
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

II.
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

III.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{x - h}$$

- a. I only
- b. II only
- c. I and II only
- d. I and III only
- e. I, II, and III

5. The following expression represents the derivative of what function?

$$\lim_{\Delta x \to 0} \frac{2(x + \Delta x)^7 - 5(x + \Delta x) + 8 - (2x^7 - 5x + 8)}{\Delta x}$$

a.
$$f(x) = 2(x + \Delta x)^7 - 5(x + \Delta x) + 8$$

b.
$$f(x) = 2x^7 - 5x + 8$$

c.
$$f(x) = 2(x + \Delta x)^7 - 5(x + \Delta x) + 8 - (2x^7 - 5x + 8)$$

d.
$$f(x) = 14x^6 - 5$$

e.
$$f(x) = \frac{2(x + \Delta x)^7 - 5(x + \Delta x) + 8 - (2x^7 - 5x + 8)}{\Delta x}$$

6.
$$\lim_{h \to 0} \frac{(2+h)^4 - 2^4}{h} =$$

- a. 0
- b. 16
- c. 1
- d. 32
- e. The limit does not exist
- 7. The differentiable function g is increasing over the interval $(x_0, x_0 + 1)$. If $x_0 < c < x_0 + 1$, what can you conclude about $\lim_{x \to c} \frac{g(x) g(c)}{x c}$? Explain your response.